Int. J. Heat Mass Transfer. Vol. 30, No. 11, pp. 2446-2447, 1987 Printed in Great Britain

0017-9310/87 \$3.00 + 0.00 Pergamon Journals Ltd.

Transient state temperature distribution in a cylindrical conductor with skin effect

Technical Notes

A. JORDAN, A. BARKA and M. BENMOUNA

Institut National de l'Enseignement Superieur, Département de Physique, B.P. 119, Tlemcen, Algerie

(Received 2 January 1987)

1. INTRODUCTION

IN A PREVIOUS paper [1] we examined the problem of the temperature distribution in a cylindrical conductor in the steady-state regime and in the presence of skin effect. We solved a set of couple equations involving the space distribution of temperature $T_p(r)$ and J_m which represents the maximum current density. The latter is allowed to be a complex quantity. We assumed that all physical parameters such as the thermal conductivity λ and the electrical resistivity ρ are constants. After solving the equation involving J_m by a method which is described in detail in ref. [1], we obtained the following equation governing the distribution of temperature in the presence of skin effect :

$$\frac{\mathrm{d}^2 T_p}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}T_p}{\mathrm{d}r} + \Gamma K(r/R) = 0 \tag{1}$$

where Γ and K(r/R) are defined by

$$\Gamma = \frac{\rho}{2\lambda} \frac{I_m^2 p}{4\pi^2 r_0^2} \frac{1}{(\text{ber}' \sqrt{pr_0})^2 + (\text{bei}' \sqrt{pr_0})^2}$$
(2)

$$K(r/R) = 1 + \sum_{n=1}^{\infty} \frac{1}{(n!)^3 (2n-1)!!} \left(\frac{r}{R}\right)^{4n}$$
(3)

 r_0 is the radius of the conductor and $p = |\xi| = 2\pi f \mu \gamma$, $R = 2^{5/4}/p^{1/2}$, f is the current frequency, μ the magnetic permeability and $\gamma = 1/\rho$. We note that here, $T_p(r)$ represents the absolute temperature at a distance r from the centre line of the conductor in the steady-state regime. The solution of equation (1) satisfying the classical boundary conditions [1] was found as

$$T_{p}(r) = \Gamma\left[r_{0}^{2}A(r/R) + \frac{\lambda r_{0}}{\varepsilon}B(r_{0}/R) - r^{2}A(r/R)\right]$$
(4)

where the analytical expressions of the functions A(r/R) and B(r/R) are given in ref. [1]. Here we choose to illustrate them graphically as a function of r together with K(r/R) in Fig. 1. The aim of this note is to extend this problem to the transient state distribution of temperature in the presence of skin effect.

2. TRANSIENT STATE

The equation governing the temperature distribution in space and time for a cylindrical conductor in the presence of skin effect is

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \Gamma K(r/R) = \frac{1}{\kappa} \frac{\partial T}{\partial t}$$
(5)

where T(r, t) is written as

$$T(r,t) = T_p(r) + T_t(r,t).$$
 (6)

 $T_t(r, t)$ represents the transient state component of the temperature and $\kappa = \lambda/(c\delta)$ is the thermal diffusivity, c the specific heat and δ the mass density. To solve this equation one needs, besides the boundary conditions specified in ref. [1], an initial

FIG. 1. Curves representing the variation with x of the functions: (a) $\log A(x)$ (see equation (25) of ref. [1]); (b) $\log B(x)$ (see equation (26) of ref. [1]); (c) $\log K(x)$ (see equation (3) of this work).

condition which is chosen as

$$T(r, t=0) = 0$$
 or $T_t(r, t=0) = -T_p(r), \quad 0 \le r \le r_0.$ (7)

Substituting equation (6) into equation (5), one obtains a set of two equations. The first one is identical to equation (1), and hence, gives $T_p(r)$, and the second one involves $T_t(r, t)$

$$\frac{\partial^2 T_t}{\partial r^2} + \frac{1}{r} \frac{\partial T_t}{\partial r} = \frac{1}{\kappa} \frac{\partial T_t}{\partial t}.$$
(8)

This equation is solved by the standard method of separation of variables [2]. One can easily verify that the result takes the form

$$T_{t}(\mathbf{r},t) = -\sum_{n=1}^{\infty} A_{n} J_{0} \left(\frac{\alpha_{n}}{r_{0}} \mathbf{r} \right) e^{-(\alpha_{n}^{2}/r_{0}^{2})\kappa t}.$$
 (9)

This result shows immediately that the steady-state temperature $T_p(r)$ can be expanded in a series of Bessel functions of zeroth order

$$-T_{t}(r,t=0) = T_{p}(r) = \sum_{n=1}^{\infty} A_{n} J_{0}\left(\frac{\alpha_{n}}{r_{0}}r\right).$$
(10)

.

To determine the quantity A_n , we need to use both equations (4) and (10). This leads to

$$A_{n} = 2 \frac{T_{p,\max}r_{0}^{2}J_{1}(\alpha_{n}) - \Gamma\alpha_{n} \int_{0}^{r_{0}} r^{3}A(r/R)J_{0}\left(\frac{\alpha_{n}}{r_{0}}r\right)dr}{r_{0}^{2}\alpha_{n}[J_{0}^{2}(\alpha_{n}) - J_{1}^{2}(\alpha_{n})]}$$
(11)

where $T_{p,\max}$ is the maximum value of the temperature which is reached at the centre line, $J_1(\alpha_n)$ the Bessel function of first order, α_n the solution of the equation

$$J_0(\alpha) - \frac{\lambda}{r_0 \varepsilon} \alpha J_1(\alpha) = 0 \qquad (12)$$

and ε represents the convective heat transfer coefficient. Substituting equations (9) and (10) into equation (6) yields

$$T(r,t) = \sum_{n=1}^{\infty} A_n (1 - e^{-(\alpha_n^2/r_0^2)\kappa t}) J_0 \left(\frac{\alpha_n}{r_0}r\right).$$
(13)

To illustrate the importance of skin effect on the transient state temperature distribution, we have plotted in Fig. 2 the variation of $\Delta T(r, t) = T(r, t) - T_s(t)$ as a function of r for various times from the moment where the high frequency current is switched on. $T_s(t)$ represents the absolute temperature at the surface of the conductor. To plot these curves, we have used the same values for the physical parameters λ , ρ , r_0 and I_m as in ref. [1]. I_m is chosen to represent the case of a strong skin effect corresponding to a high current frequency (f = 0.9 MHz). Furthermore, the diffusivity κ is taken as

$$\kappa = 21.3 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$$

which corresponds to tungsten at 3000 K [3]. One observes that the skin effect develops very quickly after switching the current on. Indeed, at short times, one immediately sees a peak of temperature near the surface, the maximum of which is located around the skin depth $\delta = (\pi f \mu \gamma)^{-1/2} \approx 0.5$ mm. It is clear that for short times ΔT should be negative since at t = 0, we have used the initial condition T(r, t = 0) = 0. As time increases, the transient state temperature distribution evolves progressively towards the steady-state distribution which, in our case is reached after about 30 s.

3. CONCLUSION

In this note, we present an exact analytical solution for the transient state temperature distribution in an electrical conductor in the case of a strong skin effect. This solution can be exploited in various practical applications such as induction heating systems, determination of physical parameters for a given temperature profile, etc. We have deliberately chosen the case of a strong skin effect to illustrate clearly its impact on the temperature distribution. But this formalism can be of course applied to the limit of a weak skin effect as well. The physical parameters involved in this problem are all assumed to be constant which leads to a linear system to be solved. In the case where these parameters are functions of temperature, one is faced with a non-linear system which is far more difficult to solve. We hope to

FIG. 2. The variation of $\Delta T(r, t) = T(r, t) - T_s(t)$ as a function of r at various times: t = 3 s, $T_s = 1925.72$ K; t = 5 s, $T_s = 2454.57$ K; t = 10 s, $T_s = 2901.52$ K; t = 30 s, $T_s = 3002.76$ K (steady-state temperature distribution).

examine this problem in the near future using the optimal linearization method which we have recently developed [4].

REFERENCES

- 1. A. Jordan, A. Szybiak, M. Benmouna and A. Barka, Temperature distribution in a cylindrical conductor with skin effect, *Int. J. Heat Mass Transfer* **30**, 1539–1541 (1987).
- A. B. De Vriendt, La Transmission de la Chaleur (Edited by Gaëtan Morin), Vol. 1, Tome 1. Quebec, Canada (1982).
- R. E. Taylor, Thermal properties of tungsten SRM's 730 and 799, J. Heat Transfer 100, 330-333 (1978).
- A. Jordan, S. Khaldi, M. Benmouna and A. Borucki, Study of non-linear heat transfer problems. *Revue Phys. Appl.* 22 (1987).